

Rethinking RAID

Dwain Sims dsims@bayleafnc.org

Secure Computing with Apache Struts

Dwain Sims dsims@bayleafnc.org

Who is this guy?

MS Computer Science, West Virginia University 16 Years in Silicon Valley

Lockheed

Sun Microsystems

12 Years in Linux High Availability

5 Years in Flash Storage

Fusion-io

SanDisk

Western Digital

Inspiration

Storage is going through a Revolution

Inspiration

Old Habits Die Hard

Quick History Lesson

5 MB \$3200/Month 1956

Fujitsu Eagle

470 MB, \$10K, 600W

RAID now enters, stage left.....

This is where the whole idea about RAID got started.

Shugart (Seagate) ST-506

5 MB \$1500 1980

HGST "King Cobra" C15K600

\$670, 600GB, 7.5W

HGST Ultrastar He¹²

\$670 12TB, 9.8W

What is this RAID stuff anyway?

12

Quick RAID History

UC Berkley

Also the home of vi, csh, UNIX TCP/IP, BSD UNIX and Bill Joy!

David Patterson, Garth Gibson, and Randy Katz Mid-80s

Redundant Array of Inexpensive Disks

Now "Independent" Disks

IBM can also claim invention of RAID

Norman Ken Ouchi – RAID 4 Clark, et al. - Patent on RAID 5 (1986)

Early RAID Systems

A Pillar of Reliability

Digital StorageWorks RAID Array 230 Subsystem

14

RAID Terminology

RAID-0

Striping; Super Important and widely used. No Redundancy!

RAID-1

Mirroring; Super important and widely used.

RAID-10

A stripe of mirrors. Super important and widely used.

N number of devices are lost capacity-wise.

RAID-2

Never Used

RAID-3 and RAID-4

Rarely used

RAID Terminology

RAID-5

Parity spread across N+1 devices; Can survive 1 device failure. Can be implemented in both Hardware and Software Single device capacity is lost

RAID-6

Parity spread across N+2 devices; Can survive 2 device failures. Can be implemented in both Hardware and Software Two device capacity is lost

So what is the problem?

Device failure means RAID Rebuild!

Not Really a big deal with sub-TB hard drives

We will see that data shortly

Became more Dangerous and Painful at 1TB

Solution - RAID 6! (well sorta..)

However, with 10TB devices (and beyond)...

Monster Problem!

As we shall see....

Methodology

Common Servers

- Lenovo Broadwell based (Lenovo x3650 M5, 2U, 2 Socket)
- CentOS 7.3 (.514 kernel)
- Avago (LSI) RAID Adapter "Flatwoods" (mostly)

RAID-5 Array

5 Devices in RAID 5, with a hot spare (in most cases) (and couple of interesting Software RAID Scenarios)

Common Load

- Flexible I/O Tester "fio"
- 60/40 Random Read/Write
- Queue Depth = 32 per job (20 jobs)

Methodology

Measuring

IOPS with No Load

- IOPS under Load
- RAID Rebuild time with No Load
- RAID Rebuild time under Load

And Now a Word from Our Sponser

Easy Way to Sponser

Collected Data

RAID 5 Rebuild Times

		Rebuild time Idle	Rebuild Time under Load	Normal Read	Normal Write	Rebuild Read	Rebuild Write	
Drive	RAID Array Size	(hours)	(hours)	IOPS	IOPS	IOPS	IOPS	
500GB 7200 6G SAS	2TB	1.5	134	265	170	170	125	
HGST King Cobra F 15K 300G 12G SAS	1.2TB	0.7	54	564	375	434	284	
HGST Cobra F 10K 600GB 12G SAS	2.4TB	1.5	58	514	343	350	217	
HGST 10TB 12G SAS (Libra He10)	40TB	77	4200 (extrapolated)	olated) 313 209 20		208	127	
CloudSpeed II 1.92TB SATA	7.7TB	2	18	33.7K	22.5K	12.8K	8.6K	
Optimus II Max 3.84TB 6G SAS	15.4TB	5.5	14.5	29.4K	19.6K	18.4K	12.2K	
Optimus II Ascend 800GB 6G SAS	3.2TB	0.5	6	33.7K	22.5K	15.8K	10.8K	
Bear Cove 10DWPD 800G 12G SAS R100 (14W)	3.2TB	0.5	6	33.4K	22.3K	16.7K	11.2K	
Bear Cove 10DWPD 800G 12G SAS R100 (9W)	3.2TB	0.5	6	32.9K	21.1K	16.8K	11.3K	
Fusion ioMemory SX350 3.2TB PCIe	12.8TB	5	122	49.6K	33.5K	16.8K	12K	
Fusion ioMemory SX350 3.2TB PCIe (Thread=32)	12.8TB	1	25	182K	121K	144K	95.7K	
HGST SN-150 1.6TB NVMe	6.4TB	1	83	134.7K	89.8K	44.4K	28.5K	
HGST SN-150 1.6TB NVMe (Threaded=16)	6.4TB	0.5	4	164K	109K	125K	81.9K	
Fusion ioMemory SX350 3.2TB PCIe	12.8TB			296K	197K			
Fusion ioMemory SX350 3.2TB PCIe	16TB			330K	220K			
Fusion ioMemory SX350 3.2TB PCIe	3.2TB			154K	103K			

Consequences!

RAID-5(6) Rebuild times on current "Capacity" (10,12 TB) drives are enormous!

- **4200 Hours** ≈ **5** ¹/₂ **Months**
- Staggering!!

Devices are stressed even more during rebuild

- Increased chance of additional device(s) failing
- **Relatively slow devices now run even slower!**

Is there Better Way?

Absolutely!

Application Redundancy

Let your application take care of Redundancy

- MySQL Master-Slave Replication
- Oracle Data Guard
- **Microsoft SQLserver AlwaysOn Application Cluster**
- **SAP Hana**
- Hadoop (in the base architecure)
- **OpenStack and Ceph**

Not only protects against storage failure, but system failure as well

Erasure Coding

- **RAID-6** is a primitive Erasure Code
- Tahoe-LAFS
- **Ceph Block and Object**
- Hadoop
- Swift and other Object Storage Solutions
- **HGST ActiveScale S3**
- **API (ie Reed-Solomon, OpenRQ)**

ceph

Software Defined Storage

- Ceph
- Swift
- **SUSE Enterprise Storage**
- **VMware VSAN**
- **Microsoft Storage Spaces Direct**
- DataCore
- Nexenta
- Nutanix
- (and a score of others)

Remember the Revolution....

Flash Storage

UBER

Typically an order of magnitude (or two!) better than spinners No Moving Parts Built-in Resiliency

Tools

Fio

The Flexible I/O Tester Small learning curve yields great results Very script-able

Tips

Remember to "Pre-Condition" (especially Flash devices)

Watch your Queue Depth

Use the right "io engine"

Beware - power tools can injure!

Fio sample script

[global] readwrite=write rwmixread=0 blocksize=4M ioengine=libaio thread=0 size=100% iodepth=16 group_reporting=1 description=fio PRECONDITION sequential 4M complete write

```
[/dev/sda]
filename=/dev/sda
cpus_allowed=0-19
```

More Tools

MegaRAID Storage Manager Linux md RAID tools

cat /proc/mdstat

mdadm __misc __detail /dev/mdYYY

dmesg -H -w

Take Time to Tune your md Array

Threads

\$ sudo echo 16 > /sys/block/md0/md/group_thread_cnt

Speed Limits

dev.raid.speed_limit_max = xxyyzz

Defaults to dev.raid.speed_limit_max = 200000

Things to Remember

•RAID 0 and 1 (and 10) are still very viable

•Maybe not so much with RAID 10....

•RAID 5 and 6 are still OK for Flash Devices

·Understand your Limitations!

•The RAID Adapter will be your limiting factor

•RAID 6 is likely OK for sub-TB Spinning Disk

·As long as you can get them!

•RAID Hardware varies widely in performance!

Capacity Hard Drives Require a different Data Resiliency Technique

·Using md Software RAID? Do not forget to tune!

Maybe some concern with RAID 10...

RAID 5 Rebuild Times									
Drive	Server	RAID Adapter	RAID Array Size	Rebuild time Idle (hours)	Rebuild Time under Load (hours)	Normal Read IOPS	Normal Write IOPS	Rebuild Read IOPS	Rebuild Write IOPS
HGST 10TB 12G SAS (Libra He10)	x3650 M5	LSI Avago M5210 RAID 10 4x2	40TB	16	1344	607	405	479	315

Where next?

Resources

https://archive.org/details/byte-magazine

(Sept 1995, page 248)

https://www.youtube.com/watch?v=V-WbdMPiM1A

Fujitsu Eagle Spinup!

http://queue.acm.org/detail.cfm?id=1670144

Triple-Parity RAID and Beyond (Adam Leventhal, Sun)

https://github.com/axboe/fio

Flexible I/O Tester (fio) (Jens Axboe)

https://en.wikipedia.org/wiki/RAID

- https://raid.wiki.kernel.org/index.php/RAID_setup
 - Excellent md RAID tutorial

Dwain Sims dsims@bayleafnc.org Google Voice: 919-480-1774

Collected Data

RAID 5 Rebuild Times									
			RAID	Rebuild time Idle	Rebuild Time under Load	Normal Read	Normal Write	Rebuild Read	Rebuild Write
Drive	Server	RAID Adapter	Array Size	(hours)	(hours)	IOPS	IOPS	IOPS	IOPS
500GB 7200 6G SAS	x3500 M2	MR10i	2TB	15	134	265	170	170	125
HGST King Cobra E 15K 300G 12G SAS	x3650 M5	LSL Avago M5210	1.2TB	0.7	54	564	375	434	284
HGST Cobra F 10K 600GB 12G SAS	x3650 M5	LSI Avago M5210	2.4TB	1.5	58	514	343	350	217
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~			4200				
HGST 10TB 12G SAS (Libra He10)	x3650 M5	LSI Avago M5210	40TB	77	(extrapolated)	313	209	208	127
HGST 10TB 12G SAS (Libra He10)	x3650 M5	LSI Avago M5210 RAID 10 4x2	40TB	16	1344	607	405	479	315
CloudSpeed II 1.92TB SATA	x3650 M5	LSI Avago M5210	7.7TB	2	18	33.7K	22.5K	12.8K	8.6K
Optimus II Max 3.84TB 6G SAS	x3650 M5	LSI Avago M5210	15.4TB	5.5	14.5	29.4K	19.6K	18.4K	12.2K
Optimus II Ascend 800GB 6G SAS	x3650 M5	LSI Avago M5210	3.2TB	0.5	6	33.7K	22.5K	15.8K	10.8K
Bear Cove 10DWPD 800G 12G SAS R100 (14W)	x3650 M5	LSI Avago M5210	3.2TB	0.5	6	33.4K	22.3K	16.7K	11.2K
Bear Cove 10DWPD 800G 12G SAS R100 (9W)	x3650 M5	LSI Avago M5210	3.2TB	0.5	6	32.9K	21.1K	16.8K	11.3K
Fusion ioMemory SX350 3.2TB PCIe	x3650 M5	Linux MD RAID	12.8TB	5	122	49.6K	33.5K	16.8K	12K
Fusion ioMemory SX350 3.2TB PCIe (Thread=32)	x3650 M5	Linux MD RAID	12.8TB	1	25	182K	121K	144K	95.7K
HGST SN-150 1.6TB NVMe		Linux MD RAID	6.4TB	1	83	134.7K	89.8K	44.4K	28.5K
HGST SN-150 1.6TB NVMe (Threaded=16)		Linux MD RAID	6.4TB	0.5	4	164K	109K	125K	81.9K
Fusion ioMemory SX350 3.2TB PCIe	x3650 M5	Linux MD RAID0 x4	12.8TB			296K	197K		
Fusion ioMemory SX350 3.2TB PCIe	x3650 M5	Linux MD RAID0 x5	16TB			330K	220K		
Fusion ioMemory SX350 3.2TB PCIe	x3650 M5	No RAID	3.2TB			154K	103K		